Search results for "rotating wave approximation"

showing 10 items of 12 documents

The limits of the rotating wave approximation in electromagnetic field propagation in a cavity

2005

We consider three two-level atoms inside a one-dimensional cavity, interacting with the electromagnetic field in the rotating wave approximation (RWA), commonly used in the atom-radiation interaction. One of the three atoms is initially excited, and the other two are in their ground state. We numerically calculate the propagation of the field spontaneously emitted by the excited atom and scattered by the second atom, as well as the excitation probability of the second and third atom. The results obtained are analyzed from the point of view of relativistic causality in the atom-field interaction. We show that, when the RWA is used, relativistic causality is obtained only if the integrations …

Condensed Matter::Quantum GasesElectromagnetic fieldPhysicsQuantum PhysicsField (physics)FOS: Physical sciencesGeneral Physics and AstronomyOptical fieldCausalityCavity quantum electrodynamicRotating wave approximation.Quantum electrodynamicsQuantum mechanicsExcited stateAtomPhysics::Atomic and Molecular ClustersRotating wave approximationPhysics::Atomic PhysicsQuantum Physics (quant-ph)Ground stateExcitationPhysics Letters A
researchProduct

Resonance of minimizers forn-level quantum systems with an arbitrary cost

2004

We consider an optimal control problem describing a laser-induced population transfer on a n-level quantum system. For a convex cost depending only on the moduli of controls ( i.e. the lasers intensities), we prove that there always exists a minimizer in resonance. This permits to justify some strategies used in experimental physics. It is also quite important because it permits to reduce remarkably the complexity of the problem (and extend some of our previous results for n=2 and n=3): instead of looking for minimizers on the sphere one is reduced to look just for minimizers on the sphere . Moreover, for the reduced problem, we investigate on the question of existence of strict abnormal mi…

Control and OptimizationMathematical analysisRegular polygonOptimal controlResonance (particle physics)ModuliPontryagin's minimum principleComputational MathematicsControl and Systems EngineeringQuantum systemRotating wave approximationApplied mathematicsQuantumMathematicsESAIM: Control, Optimisation and Calculus of Variations
researchProduct

Quantum Non-Markovian Collision Models from Colored-Noise Baths

2019

A quantum collision model (CM), also known as repeated interactions model, can be built from the standard microscopic framework where a system S is coupled to a white-noise bosonic bath under the rotating wave approximation, which typically results in Markovian dynamics. Here, we discuss how to generalize the CM construction to the case of frequency-dependent system–bath coupling, which defines a class of colored-noise baths. This leads to an intrinsically non-Markovian CM, where each ancilla (bath subunit) collides repeatedly with S at different steps. We discuss the illustrative example of an atom in front of a mirror in the regime of non-negligible retardation times.

CouplingPhysicssymbols.namesakeClassical mechanicsColors of noiseAtomsymbolsRotating wave approximationMarkov processCollision modelCollisionQuantum
researchProduct

Evanescent wave approximation for non-Hermitian Hamiltonians

2020

The counterpart of the rotating wave approximation for non-Hermitian Hamiltonians is considered, which allows for the derivation of a suitable effective Hamiltonian for systems with some states undergoing decay. In the limit of very high decay rates, on the basis of this effective description we can predict the occurrence of a quantum Zeno dynamics, which is interpreted as the removal of some coupling terms and the vanishing of an operatorial pseudo-Lamb shift.

Evanescent waverotating wave approximationeffective HamiltonianGeneral Physics and AstronomyFOS: Physical scienceslcsh:Astrophysics01 natural sciencesArticle010305 fluids & plasmassymbols.namesake0103 physical scienceslcsh:QB460-466non-Hermitian HamiltonianLimit (mathematics)quantum Zeno effect010306 general physicslcsh:ScienceMathematical physicsQuantum Zeno effectCouplingPhysicsQuantum PhysicsBasis (linear algebra)open quantum systemsEffective hamiltonian Non-hermitian hamiltonian Open quantum systems Quantum zeno effect Rotating wave approximationHermitian matrixlcsh:QC1-999symbolsRotating wave approximationlcsh:QHamiltonian (quantum mechanics)Quantum Physics (quant-ph)lcsh:Physics
researchProduct

Floquet theory for temporal correlations and spectra in time-periodic open quantum systems: Application to squeezed parametric oscillation beyond the…

2021

Open quantum systems can display periodic dynamics at the classical level either due to external periodic modulations or to self-pulsing phenomena typically following a Hopf bifurcation. In both cases, the quantum fluctuations around classical solutions do not reach a quantum-statistical stationary state, which prevents adopting the simple and reliable methods used for stationary quantum systems. Here we put forward a general and efficient method to compute two-time correlations and corresponding spectral densities of time-periodic open quantum systems within the usual linearized (Gaussian) approximation for their dynamics. Using Floquet theory we show how the quantum Langevin equations for…

Floquet theoryPhysicsQuantum PhysicsTime periodicComputationParametric oscillationFOS: Physical sciencesFísicaÒpticaOptometria01 natural sciencesSpectral line010305 fluids & plasmasRange (mathematics)0103 physical sciencesRotating wave approximationVisióStatistical physicsQuantum Physics (quant-ph)010306 general physicsQuantum
researchProduct

Two-laser multiphoton adiabatic passage in the frame of the Floquet theory. Applications to (1+1) and (2+1) STIRAP

1998

We develop an adiabatic two-mode Floquet theory to analyse multiphoton coherent population transfer in N-level systems by two delayed laser pulses, which is a generalization of the three-state stimulated Raman adiabatic passage (STIRAP). The main point is that, under conditions of non-crossing and adiabaticity, the outcome and feasibility of a STIRAP process can be determined by the analysis of two features: (i) the lifting of degeneracy of dressed states at the beginning and at the end of the laser pulses, and (ii) the connectivity of these degeneracy-lifted branches in the quasienergy diagram. Both features can be determined by stationnary perturbation theory in the Floquet representation…

Floquet theoryPhysicsStimulated Raman adiabatic passageOptical physicsAtomic and Molecular Physics and Opticssymbols.namesakeStark effectQuantum mechanicssymbolsRotating wave approximationPhysics::Atomic PhysicsPerturbation theoryDegeneracy (mathematics)Adiabatic processThe European Physical Journal D
researchProduct

Non-Hermitian Hamiltonian for a Modulated Jaynes-Cummings Model with PT Symmetry

2015

We consider a two-level system such as a two-level atom, interacting with a cavity field mode in the rotating wave approximation, when the atomic transition frequency or the field mode frequency is periodically driven in time. We show that in both cases, for an appropriate choice of the modulation parameters, the state amplitudes in a generic $n${-}excitation subspace obey the same equations of motion that can be obtained from a \emph{static} non-Hermitian Jaynes-Cummings Hamiltonian with ${\mathcal PT}$ symmetry, that is with an imaginary coupling constant. This gives further support to recent results showing the possible physical interest of ${\mathcal PT}$ symmetric non-Hermitian Hamilto…

PhysicsCoupling constantQuantum PhysicsJaynes–Cummings modelJaynes-Cummings modelFOS: Physical sciencesEquations of motionMathematical Physics (math-ph)Non-Hermitian HamiltoniansHermitian matrixAtomic and Molecular Physics and Opticssymbols.namesakePT symmetryAmplitudeQuantum mechanicssymbolsRotating wave approximationQuantum Physics (quant-ph)Hamiltonian (quantum mechanics)Subspace topologyMathematical Physics
researchProduct

Misbeliefs and misunderstandings about the non-Markovian dynamics of a damped harmonic oscillator

2003

We use the exact solution for the damped harmonic oscillator to discuss some relevant aspects of its open dynamics often mislead or misunderstood. We compare two different approximations both referred to as Rotating Wave Approximation. Using a specific example, we clarify some issues related to non--Markovian dynamics, non--Lindblad type dynamics, and positivity of the density matrix.

PhysicsDensity matrixQuantum PhysicsPhysics and Astronomy (miscellaneous)Dynamics (mechanics)FOS: Physical sciencesMarkov processType (model theory)Atomic and Molecular Physics and Opticssymbols.namesakeClassical mechanicsExact solutions in general relativitydecoherence non-Markovian dynamics damped harmonicoscillatorsymbolsRotating wave approximationQuantum Physics (quant-ph)Harmonic oscillatorJournal of Optics B: Quantum and Semiclassical Optics
researchProduct

Floquet perturbative analysis for STIRAP beyond the rotating wave approximation

2009

We present a perturbative analysis of Floquet eigenstates in the context of two delayed laser processes (STIRAP) in three level systems. We show the efficiency of a systematic perturbative development which can be applied as long as no non-linear resonances occur.

PhysicsFloquet theorylawQuantum electrodynamicsQuantum mechanicsRotating wave approximationContext (language use)LaserAtomic and Molecular Physics and OpticsThree levelEigenvalues and eigenvectorslaw.inventionOptics Express
researchProduct

Waveguide-QED-based measurement of a reservoir spectral density

2015

The spectral density (SD) function has a central role in the study of open quantum systems (OQSs). We discover a method allowing for a "static" measurement of the SD - i.e., it requires neither the OQS to be initially excited nor its time evolution tracked in time - which is not limited to the weak-coupling regime. This is achieved through one-dimensional photon scattering for a zero-temperature reservoir coupled to the OQS via the rotating wave approximation. We find that the SD profile is a universal simple function of the photon's reflectance and transmittance. As such, it can be straightforwardly inferred from photon's reflection and transmission spectra.

PhysicsQuantum PhysicsPhotonCondensed Matter - Mesoscale and Nanoscale PhysicsTime evolutionSpectral densityFOS: Physical sciencesSpectral lineWaveguide-QED-based measurement of a reservoir spectral densityAtomic and Molecular Physics and OpticsComputational physicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)Reflection (physics)TransmittanceRotating wave approximationWaveguide (acoustics)Atomic physicsQuantum Physics (quant-ph)
researchProduct